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The Times They Are  A-Changing: Experimenting 
with Dynamic Adverse Selection†

By Felipe A. Araujo, Stephanie W. Wang, and Alistair J. Wilson*

We examine a  common value dynamic matching environment 
where adverse selection accrues slowly over time. Theoretical best 
responses are therefore time varying, and the prior experimental lit-
erature suggests that sequential environments might lead to greater 
understanding of adverse selection in this dynamic setting. However, 
while a sophisticated minority in our experiment do condition on 
time and are close to a best response, the majority use a stationary 
response, even after extended experience. In an environment with 
persistent uncertainty, our results indicate that sequentiality is insuf-
ficient for the large majority of participants to recognize the effects 
of adverse selection. (JEL C78, C92, D82, D91)

The passage of time carries with it important strategic content across a myr-
iad of economic settings. In labor markets, longer periods of unemployment 

can serve as a negative signal to prospective employers. For durable goods like 
houses, extended time on the market can reduce sellers’ bargaining positions. In 
insurance markets, protracted spells without policy coverage can raise red flags with 
underwriters on new policy applications. Dynamic selection forces are present in 
 day-to-day consumer interactions, where the expected produce quality at a farm-
er’s market will fall through the day as  early-bird shoppers pick through the best 
offerings. And it can be a force in more esoteric markets such as academic paper 
publication, where observables like the length of time a working paper has been in 
circulation can act as a negative signal.

While the above examples motivate how situations with dynamically accru-
ing selection are commonplace, evidence for how decision-makers respond to 
adverse selection is predominantly derived from behavior in static situations such 
as  sealed-bid  common value auctions and  market-for-lemons environments. While 
this literature certainly demonstrates initial failures of the  Bayes-Nash equilibrium 
predictions, there is some evidence that experience pushes participants toward 
the equilibrium. For example, though many fall for the winner’s curse early on in 
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 experiments, learning pushes them to bid less as they gain experience. Moreover, 
the literature has identified the sequentiality of the decision as an important predic-
tor for when participants will adapt to selection. Though strategically more com-
plex, there is evidence that dynamic environments such as  ascending price auctions 
remove winner’s curse behavior. As such, while much of the behavioral literature 
is pessimistic about  a decision-maker’s ability to comprehend and adapt to adverse 
selection, there is some room for optimism for the standard theory in dynamic, 
sequential settings.

Our experiments create a  test tube for examining these ideas. Specifically, in our 
dynamic matching environment, participants make sequential decisions in which 
the best response should condition on the passing of time. In our main  adverse 
selection treatments, participants are formed into groups, with each member ini-
tially assigned an object with an independently assigned common value. While the 
assigned object’s value is initially uncertain, participants receive information on 
its value at an exogenously determined point in time. At this point, they are given 
a chance to exchange it for a rematching option. However, the rematching pool 
in our game is whatever object is not held by the other participants, and  given-up 
objects become the rematching pool for subsequent movers. As such, adverse selec-
tion increases over time.

Given the accruing selection, equilibrium behavior is highly sensitive to the pass-
ing of time and can be characterized by a cutoff strategy with greater willingness 
to keep  low-valued objects at later points in time. While precise computation of the 
equilibrium  best response is undoubtedly complicated, a feature of our environment 
is that so long as all participants use a cutoff at each point in time—giving up objects 
below this level, keeping those above—then the precise  best response is insensitive to 
the level of others’  time-varying cutoffs. In particular, even a simple belief that others 
use a fixed, stationary cutoff leads to essentially the same predicted behavior as equi-
librium. However, while  equilibrium-like play can be reached with minimal strategic 
sophistication in beliefs, it is also possible that equilibrium behavior is reached in the 
long run through experience. A simple requirement for convergence to equilibrium in 
our setting (as all information sets are visited with positive probability) is that partici-
pants allow for the possibility that the best response is  time varying. Experienced bad 
(good) outcomes that occur later (earlier) in the game must be considered distinctly 
when forming an expectation over the value of rematching.

Our experimental results find that aggregate behavior is qualitatively in line with 
the equilibrium predictions: participants are less likely to give up  lower-valued 
objects as time passes. However, the point estimates are significantly different from 
the quantitative predictions. We show that this mismatch is driven by  individual-level 
heterogeneity. In particular, a large proportion of participants fail to respond to the 
passage of time at all, exhibiting a stationary response even after extensive experi-
ence. The qualitative decrease overall is instead driven by a minority of participants 
(approximately a third) whose behavior is much closer to the equilibrium predic-
tions, both qualitatively and quantitatively. Similar effects and participant heteroge-
neity are found across four robustness treatments: three that vary the feedback that 
participants are given and one that converts the dynamic adverse selection into a 
decision problem.
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Taken together, our baseline and robustness results point to approximately 
 two-thirds of the participants maintaining a stationary response that omits time as a 
factor. While these stationary participants show no movement toward learning the 
qualitative conditioning variable (time) as the session proceeds, they do show a sig-
nificant unconditional learning effect, adjusting the level of their stationary response 
in reaction to experienced adverse selection, though without recognizing the pattern 
that their worst experienced outcomes tend to come at later points in time and their 
better outcomes at earlier points.

While the behavior of the majority in our experiments sounds a note of caution 
for the equilibrium prediction, there is also a  glass-one-third-full interpretation of 
our results: a substantial minority do condition on time. This subgroup’s  late-session 
behavior is  well explained by the  Bayes-Nash equilibrium, where their  time con-
ditioning emerges early on in the experimental sessions. Moreover, we find direct 
evidence that their behavior comes about through a more direct understanding of the 
equilibrium mechanics: written statements in a  peer-advice treatment indicate their 
ability to explain why the dynamic selection is occurring to others. Considering 
the marketplace selection effects likely to be present for professionals in finance, 
human resources, and actuarial disciplines, it is therefore plausible that our sophisti-
cated minority are selected at much higher rates into the professional markets where 
understanding such forces is paramount. As such, behavior in such markets may be 
far closer to the equilibrium predictions.

After a brief literature review in the next  subsection, the remainder of the paper 
is structured as follows: Section I contains the experimental design and procedures, 
while Section II presents the model and hypotheses. The main results are presented 
in Section III, while Section IV discusses heterogeneity in the response and how it 
shifts with experience. Finally, Section V concludes.

Literature Review.—Our study contributes to the growing theoretical (Eyster 
and  Rabin 2005, Jehiel 2005, Jehiel and  Samet 2007, Jehiel and  Koessler 2008, 
Esponda 2008) and experimental (Esponda and  Vespa 2014, 2018) literature on 
failures to account for others’ private information in strategic settings. Experimental 
and empirical studies have primarily focused on three settings: auctions (see Kagel 
and Levin 2002 for a survey), voting, and informed sellers. One  well-documented 
case is the winner’s curse, the systematic overbidding found in  common value auc-
tions. A leading theoretical explanation for this effect is that bidders fail to infer 
 decision-relevant information on the value of the item they are bidding on, con-
ditional on a relevant hypothetical: their bid winning the auction. Modeling this, 
Eyster and Rabin (2005) allow for participants to best respond to others’ expected 
action, failing to incorporate (or imperfectly incorporating, if partially cursed) how 
others’ actions are correlated with their private information.

A number of experimental studies have focused on determining the extent to 
which the winner’s curse can be explained by this conjecture. For example, Charness 
and Levin (2009) have participants engage as buyers in an individual version of the 
 informed seller problem. Ivanov, Levin, and Niederle (2010) have players bid in 
a  common value  second-price auction where the value of the object is the highest 
signal in the group (the maximal game), thereby controlling for beliefs about their 
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opponents’ private information. Both studies continue to find deviations from the 
standard equilibrium prediction, suggesting that incorrect beliefs about other play-
ers’ information are one source, but not the only one, of the failure to best respond.

For cursed behavior in voting, Esponda and Vespa (2014) find that most partic-
ipants in a simple voting decision problem with minimal computational demands 
are unable to think hypothetically. That is, they do not condition their votes on the 
event that their vote is pivotal (and the subsequent information on the common 
state). Moreover, a smaller fraction of participants are also unable to infer the other 
(computerized) voters’ information from their actual votes. Similarly, Esponda 
and Vespa (2018) found that most participants were not able to correctly account 
for  sample selection driven by other players’ private information.1 Our experimental 
setup expands this literature by offering a novel setting that can be used to explore 
various models of learning in connection with people’s misspecified perceptions of 
the strategic setting.

Thus far, the experimental literature has focused on the importance of sequential 
rather than simultaneous play in reaching  equilibrium-like behavior. For example, a 
significant share of participants who received explicit feedback about the computer-
ized players’ choices in the sequential treatment of Esponda and Vespa (2014) were 
able to correctly extract information from those observed choices. Similarly, players 
are more likely to adjust their thresholds to account for the selection problem if they 
were actually pivotal in the previous round (Esponda and Vespa 2018). A number of 
experiments on  sealed-bid versus clock auctions have found closer-to-equilibrium 
bidding behavior when bidders are able to observe the decisions of other bidders 
(Levin, Kagel, and Richard 1996; Kagel 1995). Carrillo and Palfrey (2009) find that 
second movers in a sequential version of a  two-sided adverse selection setup behave 
more in line with equilibrium predictions than do first movers (and players in the 
simultaneous version). Ngangoué and Weizsäcker (2021) provide another example, 
where traders neglect the information contained in the hypothetical value of the 
price in a simultaneous market but react to realized prices in line with standard the-
ory in a sequential market. However, while the literature has identified sequentiality 
as the key to participants understanding the equilibrium thinking, our paper suggests 
that sequentiality alone might not be enough in more complex settings.

Our study also speaks to the substantial theoretical literature interested in dynamic 
adverse selection environments (Hendel, Lizzeri, and  Siniscalchi 2005; Daley 
and  Green 2012; Gershkov and  Perry 2012; Chang 2018; Guerrieri and  Shimer 
2014; Fuchs and Skrzypacz 2015). One focus has been on asset markets where sell-
ers have private information about the quality of the asset (Chang 2018, Guerrieri 
and Shimer 2014). Similarly, the current and past owners of an object in our setup 
could know the value of the object, while those who have never held the object do 
not. Although our players only make a binary choice on whether to keep the object 
or trade it for another in the early rounds of the experiment, they state a cutoff value 

1 See also Enke (2020), who examines belief updating in selected samples, and Jin, Luca, and Martin (2021), 
who examine the response to empty messages in a disclosure environment. In both studies, sample selection creates 
a tension between the naïve expectation and the correct one. In our setting, we instead examine the  within-participant 
response to an observed conditioning variable, namely time, and focus more on how participants learn about the 
selection forces.
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for trading the object in later rounds, much like the price setting done by sellers and 
buyers in asset markets. Our experimental results suggest that these models should 
take seriously the questions of how equilibrium might plausibly be reached in the 
 long run if agents fail to identify relevant conditioning variables.

I. Design

We conducted 20 experimental sessions with 336 undergraduate participants. The 
experiments were all  computer based and were run at the Pittsburgh Experimental 
Economics Laboratory. Sessions lasted approximately 90 minutes and payment 
averaged $25.60, including a $6 participation fee. In total, we examine six distinct 
treatments: our main treatment and control, three variants of the main treatment 
that check robustness, and one variant of our main treatment that converts it into a 
decision problem. In the next two sections, we focus on describing the design and 
results for the core treatment/control pair: a Selection (S) treatment, with dynamic 
adverse selection, and a No Selection (NS) control, with no adverse selection and a 
stationary best response.

Our S and NS sessions both consist of 21 repetitions of the main supergame, bro-
ken up into part (i) (supergames 1–5), which introduces participants to the environ-
ment; part (ii) (supergames 6–20) and part (iii) (supergame 21), which add strategy 
methods; and part (iv), which elicits information on risk preferences and strategic 
thinking. Before each part, instructions were read aloud to the participants along-
side handouts and an overhead presentation.2 The environment in both treatments 
has a similar sequential structure with one key difference: in S supergames, three 
randomly chosen participants are matched together into a group to play a game 
with a shared rematching pool, while in the NS supergames, an individual partici-
pant makes choices in an isolated decision problem where the rematching pool is 
unaffected by others. We next describe the  S-treatment environment in more detail 
before coming back to describe the  NS treatment.

A. Selection (S) Treatment

The primary uncertainty in each of our supergames is generated by drawing four 
numbered objects, labeled as balls A–D. Each ball is assigned a random value  θ  
through an independent draw over the integers 1–100 (with proportionate common 
monetary values from $0.10 to $10.00) according to a distribution  F  with an expected 
value of 50.5.3 A group of three players is randomly assigned a mover position, 
which we refer to as first, second, or third mover. Each group member is initially 
assigned one of the four balls (without overlap). As the three players each hold an 

2 Detailed instructions, presentation slides, and screenshots of the experimental interface are available in online 
Appendixes B and C.

3 The distribution used in our experiments is a discrete uniform with additional point masses at the two extreme 
points. The probability mass function puts a  51/200  mass on the two values 1 and 100 and a  1/200  weight on each 
of the integers 2–99. This distribution was chosen to make the selection problem more salient and generate sharper 
equilibrium predictions
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initial ball, a single ball remains unheld; this unheld ball is the initial rematching 
object in our game.

An example matching is illustrated in Figure  1, where the first line shows an 
initial matching. In the illustrated example, the first mover is matched to Ball B, the 
second mover to Ball A, and the third mover to Ball D, or    ⟨  1B, 2A, 3D ⟩     for short; 
hence, the leftover rematching ball is Ball C.

Though players know which of the four balls they have been initially assigned, 
they do not start out knowing its value, nor the balls (or values) held by other group 
members. Information is exogenously provided through the following process: in 
each round, the players each flip a fair coin, where if it lands heads, they learn their 
held ball’s value; if tails, they do not, and must wait for the next round to flip again. 
Rounds are broken into  subperiods where the players move sequentially in order 
of their mover role: first, second, then third. Finally, if a player has not seen their 
held ball’s value in rounds one or two (flipping tails in both), the held ball’s value 
is revealed to them in round three with certainty. Each participant makes only one 
 payoff-relevant decision per supergame. This occurs in the round that they see their 
ball’s value, where they either:

•  keep:  hold on to the currently held  known-value ball as the final supergame 
outcome

•  switch: take the unknown rematching ball (whichever ball is currently unheld 
by another player) as the final supergame outcome and give up their currently 
held ball (which becomes the rematching ball for subsequent movers)

To make clear the process and intuition of the game, consider the example illus-
trated in Figure 1, panel A. The figure takes the point of view of the first mover, where 
elements in black represent information that is known to the first mover at each point 
in time, while elements in gray represent unknowns. In the example, though the first 
mover knows she is holding Ball B in the first round, its value remains unknown to 
her as she fails the coin flip. The first mover does not know the balls the other two 

Figure 1. Example Supergames

Panel A. Selection (3 players) Panel B. No selection (1 player)

Rd. 1

Ball A

1 34 100 13 1 34 100 13
Second First Third

1 34 100 13
First ThirdSecond

Second

1 34 100 13
First Third

1 34 100 13
First Third

First

1 34 100 13
First

1 34 100 13
First

1 34 100 13
First

Ball B Ball C Ball D Ball A Ball B Ball C Ball D

Rd. 2

Rd. 3

Final

Rd. 1

Rd. 2

Rd. 3

Final

Second
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players are initially holding, nor their coin flip outcomes, nor their decisions. She 
only knows that they are present and that their decisions are potentially affecting the 
rematching ball.

In the illustrated example, the initial matching is    ⟨  1B, 2A, 3D ⟩    . Unknown to the 
first mover, the second mover in round one flips a head, sees his  held ball’s value is 
one, and decides to switch, while the third mover flips tails and does not learn her 
value. The interim matching at the beginning of round two is therefore    ⟨  1B, 2C, 3D ⟩    , 
where the rematching ball is the released Ball A. In the second round, the first mover 
flips a head and sees that her held ball’s value is 34. She decides to switch and 
rematches to the currently unheld Ball A (the matching becomes    ⟨  1A, 2C, 3D ⟩    ). 
After her  round-2 decision (and again, unknown to the first mover), the second 
mover does not act, as he has already made a decision, while the third mover flips 
a head and decides to give up her  13-ball, rematching to the Ball B that was given 
up by the first mover (moving the match to    ⟨  1A, 2C, 3B ⟩    ). By round three, all three 
participants have made a decision, and so the final matching is    ⟨  1A, 2C, 3B ⟩    . At the 
end of the supergame, all four balls’ values are made common knowledge—though 
which balls other players are assigned to is not—and the first mover learns that the 
ball she rematched to has a value of one.

Supergames one through five exactly mirror the procedure above: participants 
make a binary decision to keep or switch only in the round where their assigned 
ball’s value is revealed. The second part adds a partial strategy method. Specifically, 
in supergames 6–20, participants are asked to provide a cutoff in each round, indi-
cating the lowest value for which they would keep their held ball, contingent on see-
ing its value that round. If they receive information, the decision to keep or switch 
is then resolved according to the stated cutoff; if they do not get information, they 
must wait until the next round, when they provide another cutoff. As in supergames 
one through five, participants’ only implemented decision is in the round where 
the ball’s value is revealed. Finally, in part (iii), we use a complete strategy method 
in which participants are not told whether or not information was received in each 
round and we collect their  minimum acceptable cutoff values in all 3 rounds of 
supergame 21 with certainty.4      ,  5

Strategic feedback on the other participants is purposefully limited in our base-
line S game, where we examine the effects of alternative feedback in our robustness 
treatments. At the end of each  S supergame, each participant sees the values of 
the four drawn balls, the particular ball/value they are holding at the end of the 
supergame, and (if they switched) the ball/value they were initially assigned to. 
Participants do not see strategic feedback. That is, they observe neither the identity 
of the balls held by the other two group members at the end of the supergame, nor 
the balls that others were initially holding, nor their choices.

4 In expectation,  one-quarter of participant data in supergames 6–20 will have data from all 3 round cutoffs, 
one-quarter will have cutoffs from rounds 1 and 2 only, and one-half only has an elicited  first-round cutoff.

5 In part (iv) at the end of each session, we collect survey information and incentivize the following elicitations: 
(a) risk preferences (using the dynamically optimized sequential experimentation method from Chapman et  al. 
2018), (b) a  three-question Cognitive Reflection Test (Frederick 2005), and (c) a continuous version of the Monty 
Hall problem. One participant per session was selected for payment in the part (iv) elicitations.
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Participants’ final payment for the session is the sum of a $6  show-up fee, $0.10 
times the value of their final held ball ($0.10 to $10.00) from 2 randomly selected 
supergames from 1–20, and $0.10 times the value of their final held ball in super-
game 21. Excluding the part (iv) payments, the experiment therefore has a minimum 
possible payment of $6.30 and a maximum of $36.00.

B. No Selection (NS) Control

Our No Selection (NS) control is designed to have the same structure as the 
 S-treatment game except that we turn off the dynamic adverse selection. This is 
achieved by making a single change to the environment: each group has just one 
member. As such, each supergame is a decision problem with a single participant 
in the role of first mover. As there are four balls and only one of them is held, the 
rematching pool is the three unheld balls. Whenever the  first mover sees her initially 
assigned ball’s value, if she decides to switch her ball, she is randomly rematched 
to one of the three unheld balls. Our NS sessions therefore replicate the incentives 
and timing from the S sessions but without the possibility of other group mem-
bers’ decisions contaminating the rematching pool. We illustrate a parallel example 
supergame for the NS environment in Figure 1, panel B.

II. Model and Hypotheses

The environments described above are dynamic assignment problems over a 
finite set of  common value objects (the balls). The objects (the  long side) are ini-
tially assigned independently of their value to the  short side of the market (the par-
ticipants). Private information on the held object’s value arrives randomly over time 
according to an exogenous process (in the experiment, the coin flips).

With a single decision-maker, the rematching pool is never affected by other par-
ticipants’ decisions. As such, the  risk-neutral prediction in our NS treatment is that 
participants are stationary and use a minimal acceptable cutoff of   μ  NS  

⁎   = 51  for 
retaining a ball. The cutoff rule gives up balls valued 50 or below (beneath the 
expected value of 50.5) and keeps balls valued 51 or higher.

In order to make clear the difference between control and treatment, from this point 
forward, we normalize all values by subtracting 51 (for both outcomes and cutoffs), 
measuring all responses relative to the stationary prediction in the control. As such, the 
 risk-neutral prediction for our control is normalized to a zero cutoff in each round.6

HYPOTHESIS 1 ( NS Treatment): Participants use a stationary cutoff in the NS treat-
ment (where the  risk-neutral prediction is for a zero cutoff in all rounds).

In contrast to the control, when there are multiple players, the arrival of private 
information over time leads to accruing adverse selection on the rematching pool. 

6 Risk aversion ( risk lovingness) will lead to negative (positive) cutoffs under the normalization. For the control 
treatment, all  expected-utility decision-makers are predicted to be stationary across rounds irrespective of risk pref-
erences, as the passing of time conveys no information on the rematching value.
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Whenever other players give up objects with observed low values and keep objects 
with high values, the rematching pool will become selected. As private information 
arrives slowly over time, adverse selection accrues dynamically. In early periods, it 
is less likely that others have received information, so the rematching pool is less 
likely to be selected. In later periods, it is more likely that others have received infor-
mation, increasing the likelihood that the rematching pool was selected.

Because the environment is sequential, the equilibrium predictions can be solved 
for inductively, starting from the first mover in round one, where the best response 
at each point is entirely backward looking. This is in contrast to many other situa-
tions that examine “cursed” behavior over hypothetical future events. For example, 
in  common value auctions, optimal  decision-making requires the bidder to act as 
if they are concentrating solely on the hypothetical event that their bid wins the 
auction, inferring information contained in winning on others’ signals and hence 
the object’s value. Similarly, in  common-value voting, the voter has to focus on the 
hypothetical event that her vote is pivotal. In our environment, the optimal response 
is instead conditioned on an experienced event—the passing of time—where hypo-
thetical thinking relates to how other participants have acted in previous periods.

From the point of view of player  i  making a decision at time  t , there are two dis-
tinct random variables: the initially assigned object value   θ  i  

0  , an i.i.d. draw from the 
CDF   F θ   , and the rematching object,   θ  t  

R  , with a distribution that varies over time due 
to other players’ rematching choices. Once the player’s  held-object value becomes 
known, the optimal  risk-neutral response is to give up held objects if their value 
is lower than the expected value of rematching and to keep higher values.7 The 
rematching random variable   θ  t  

R   and the policy cutoff   μ  t  
⁎   are calculated inductively 

from a  first mover seeing her object’s value in the first round ( t = 1 ).8 For the base 
case, the rematching option for the first mover in round one (  θ  1  

R  ) is just an i.i.d. draw 
from the  initial value distribution   F θ   , as no other participant has had a chance to 
exchange their object yet. The policy for a player moving at  t = 1  ( first round,  first 
mover) is identical to the cutoff to the NS rule: a zero cutoff if risk neutral.

For the inductive step, we define the event that the player moving at time  t  sees 
their value as    t     and the joint event that they both see their value and choose to 
switch as    t    (with complement     t  

C   ). Given the rematching random variable   θ  t  
R   and 

the policy cutoff   μ  t  
⁎   from period  t , the rematching random variable for a player 

observing their  held value in period  t + 1  is defined by9

(1)    θ  t+1  
R   |     t+1   = Pr {  t  ;  μ  t  

⁎   |      t+1  }  ⋅  (θ  |   θ <  μ  t  
⁎ )  + Pr {   t  

C ;  μ  t  
⁎   |      t+1  }  ⋅  ( θ  t  

R   |     t+1  ,    t  
C ) .  

7 In our experiments, the action set is discrete, as the normalized values are in  Θ =  {− 50, − 49, … , + 49}  , and 
so the cutoff can be summarized instead by  min {x ∈ Θ :  x ≥  μ  t  

⁎ }  , the minimal acceptable ball value.
8 For the theory, instead of indexing time by the round number, we do it by  round mover. So, the  first mover in 

round one is  t = 1 , the second mover in round one is  t = 2 , the third mover in round one is  t = 3 , the first mover 
in round two is  t = 4 , etc.

9 For example, given the base case, the next step in the induction has the second mover see her value and 
infer that  Pr {  1  ;   μ  1  

⁎  |     2   }  = Pr {  1  }  = Pr {  1  }  ⋅  F θ   ( μ  1  
⁎ )  = 1/4 , given a  one-half probability that the first mover 

observes their value and a  one-half probability that their observed ball’s value is lower than the  first-round cutoff. 
The effective CDF for the rematching pool in period two is therefore  (1/4) ⋅  F θ   (x  |   θ < 0)  + (3/4) ⋅  F θ   (x)  , with 
expected value   μ  2  

⁎  .
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The optimal policy cutoff for the player making a decision at  t + 1  is then given by 
the expected value of rematching,   μ  t+1  

⁎   = E ( θ  t+1  
R    |      t+1  )  .

Figure 2 illustrates the unique  risk-neutral perfect Bayesian equilibrium (PBE) 
prediction by round and role. The predictions for the  S treatment decrease from a 
predicted cutoff of 0 for the first mover in the first round (equivalence to the NS 
control) to a cutoff of −28 for the third mover in the third round.10 To put the extent 
of the adverse selection in context, if the other 2 agents were fully informed of the 
other 3 values and perfectly sorted so the remaining unheld ball was the worst of the 
3, its expected value would be   μ  (3)    = − 34.6 . As such, by the end of the last round, 
over 75 percent of the adverse selection possible with perfect sorting has occurred.

Within each role, the PBE predictions indicate strictly decreasing cutoffs, reflect-
ing the increased adverse selection as the game unfolds.11 This decreasing pattern 
across rounds holds in equilibrium for both  risk-loving and  risk-averse preferences.

Moreover, decreasing cutoffs across rounds is predicted even without equilib-
rium beliefs on others’ behavior. For example, a simple belief that other participants 
use a stationary ( nonboundary) cutoff rule that gives up  low-valued objects and 
keeps high ones yields  best-response cutoffs with quantitatively very similar pre-
dictions to the equilibrium.12 The reason for this is that using a cutoff   μ ′    that differs 
from the equilibrium cutoff has two largely offsetting effects in the first term on the 
 right-hand side of equation (1). On the one hand, increasing the cutoff increases 

10 The  risk-neutral PBE cutoffs for rounds one/two/three, respectively, are   (0, − 16, − 23)   for first movers,   
(− 9, − 20, − 26)   for second movers, and   (− 16, − 23, − 28)   for third movers.

11 Cutoffs are flat going from the third mover to first mover in each round due to the conditioning in equation  
(1), where a first mover who sees their value in round two (the event    4    in the induction) knows that they did not 
switch in round one.

12 In Figure A1.1 in the online Appendix, we indicate that the  first mover’s cutoff decrease between rounds one 
and two is essentially the same across a large array of beliefs for the second and  third movers’  round-one cutoff.
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Figure 2. Predicted  Adverse Selection Accruing over Supergame
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the  selection  probability,  Pr {  t  ;  μ ′  }  , as there are more values for which the initial 
object is exchanged. On the other, it decreases the severity of that selection, mak-
ing the rematching distribution given a prior switch   θ  |   θ  <  μ  t  

⁎   more favorable to 
succeeding agents. For our experimental parameterization, the robustness to oth-
ers’ cutoffs is a useful feature of the environment: even with substantial deviations 
from equilibrium play, the empirical best response remains essentially identical to 
the PBE. As such, accurate beliefs on the cutoff behavior of others is not essential 
for having a decreasing cutoff. Instead, the strategic sophistication required for a 
decreasing cutoff is more qualitative, understanding that information arrives slowly 
over time for all players and that other players will give up  low-valued objects and 
keep  high-valued ones.

Our hypotheses over cutoffs in the  S treatment are therefore as follows.

HYPOTHESIS 2 ( S Treatment): Participants use strictly decreasing cutoffs over the 
rounds of the  S-treatment supergame.

In addition to the qualitative direction of cutoffs within treatments, we can also 
predict no difference between treatment and control for the  first mover in the first 
round of the  S treatment, as at this point, there is no selection.

HYPOTHESIS 3 (First-Decision Equivalence): The distribution of  first-round 
 first-mover cutoffs in the  S treatment is identical to that in NS.

Below, we outline the aggregate experimental results from the treatment and con-
trol, where our focus will be on the  late-session play after participants have acquired 
extensive experience within each environment. After outlining the main results (and 
checking their robustness), we turn in Section IVA to subject heterogeneity and how 
the response evolves over the session as the participants gain experience.

III. Aggregate Results

We now describe the main experimental results comparing the behavior in the 
environments with and without adverse selection and examining the three hypotheses 
above.13 Aggregate results for the S and  NS environments are illustrated in Figure 3. 
The figure presents normalized cutoff data from participants in the  first-mover role 
in all supergames where a cutoff is elicited (6–21). The focus on first movers pro-
vides the cleanest comparison across treatments because (i) the PBE prediction is 
identical for the  first movers in the first round and (ii) the changes in the optimal 
cutoffs across rounds are largest for  first movers.14 While the equilibrium theory 
(the circles) and empirical best response (the triangles) predict no adverse selection 

13 Experimental data were obtained by the authors using an undergraduate student population. The data and 
replication code for the empirical parts of this paper can be accessed via the data repository. See the data citation 
Araujo, Wang, and Wilson (2021) for full URL.

14 Results and conclusions are statistically and numerically similar with a focus on all rounds and mover roles 
(see online Appendix A for details).
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in NS, the prediction in the S treatment is for selection to accrue from no effect in 
round one to a substantial negative cutoff in round three.

Three patterns emerge from inspecting Figure  3: (i) aggregate behavior does 
respond to the passage of time in S supergames, but the adjustment to the adverse 
selection falls short of the equilibrium predictions (and the empirical best response); 
(ii) behavior is qualitatively different across treatment and control; and (iii) while 
aggregate behavior in the NS control is statistically indistinguishable from the 
 risk-neutral prediction (a zero cutoff in every round), behavior in the S treatment is 
significantly different.

Table 1 provides  random-effects regression results to complement the figure. The 
table reports normalized cutoff estimates for first movers across rounds one through 
three, recovered by regressing cutoffs on a set of mutually exclusive  treatment-round 
dummies. We separately estimate  first-mover behavior in supergames 11 to 20 (panel 
A) and the  full-strategy-method supergame 21 (panel B).15 The estimated aggregate 
cutoff    μ ˆ    t  

j   for session type  j ∈  {NS, S}   and supergame round  t ∈  {1, 2, 3}   then 
allows us to make statistical inference over the equilibrium hypotheses.

Hypothesis 1 predicts stationary cutoffs across the supergame in the  NS control. 
Inspecting the average cutoffs for the control in Table 1, we find that the average 
 first-round cutoff is +3.8, slightly higher than the risk-neutral prediction of 0. While 
this decreases slightly over the course of each supergame, we cannot reject station-
arity. Examining each  NS coefficient in turn, we test whether the  cutoffs used in each 

15 Qualitatively similar results for supergames 6–20 are in online Appendix Table A3.1, while results for the 
second- and  third-mover roles are in Table A3.2.
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Figure 3.  First-Mover Cutoffs (Supergames 6–21)

Notes: Bars depict 95 percent confidence intervals from a  random-effects estimation across all cutoffs in  supergames 
6–21. Empirical best responses calculated using cutoff distributions.



VOL. 13 NO. 4 13ARAUJO ET AL.: THE TIMES THEY ARE A-CHANGING

 treatment round are equal to the coefficients used in round one, reporting the   p -values 
in the   H 0  :   μ ˆ    t  

j  =   μ ˆ    1  
NS   column. Individually, neither the second nor  third round’s 

NS coefficients are significantly different from those in the first round. Examining 
Hypothesis 1 directly with a Wald test for the same cutoff for all three rounds of the 
control (  H 0  :   μ ˆ    1  

NS  =   μ ˆ    2  
NS  =   μ ˆ    3  

NS  ), we fail to reject a stationary response for both 
supergames 11–20 (  p = 0.355 ) and supergame 21 (  p = 0.875 ).

Beyond stationarity, we also fail to reject the stronger hypothesis that aggregate 
behavior in NS is both stationary and equal to the  risk-neutral prediction. Examining 
each  NS coefficient separately, we fail to reject the  risk-neutral predictions of a 
zero cutoff in all three rounds separately ( p -values in the   H 0   :   μ ˆ    t  

j  =  μ  t  
⁎   column) and 

jointly ( p = 0.238  from a Wald test).

Table 1—Average  First-Mover Cutoff by Round in No SelectioN and SelectioN

Treatment Cutoff Theory Observations Estimate  p-values

  μ   ⁎    μ ˆ     μ ˆ   =   μ ˆ    1  
NS    μ ˆ   =  μ  t  

⁎  

Panel A. Supergames 11 to 20
NS Rd. 1,    μ ˆ    1  

NS  [0] 330   + 3.8  
 (2.4) 

    — 0.119

Rd. 2,    μ ˆ    2  
NS  [0] 170   + 3.1  

 (2.5) 
    0.213 0.216

Rd. 3,    μ ˆ    3  
NS  [0] 83   + 2.9  

 (2.5) 
    0.268 0.244

Joint tests: 0.335      ‡  0.238      §  

S Rd. 1,    μ ˆ    1  
S  [0] 460   − 4.4  

 (1.2) 
    0.003 0.000

Rd. 2,    μ ˆ    2  
S  [−16] 212   − 8.0  

 (1.3) 
    0.000 0.000

Rd. 3,    μ ˆ    3  
S  [−23] 113   − 11.9  

 (1.4) 
    0.000 0.000

Joint tests: 0.000      ‡  0.000      §  

Panel B. Supergame 21
NS Rd. 1,    μ ˆ    1  

NS  [0] 33   + 1.8  
 (2.5) 

    — 0.479

Rd. 2,    μ ˆ    2  
NS  [0] 33   + 1.9  

 (2.5) 
    0.907 0.449

Rd. 3,    μ ˆ    3  
NS  [0] 33   + 2.3  

 (2.5) 
    0.620 0.360

Joint tests: 0.875      ‡  0.817      §  

S Rd. 1,    μ ˆ    1  
S  [0] 33   − 7.5  

 (3.0) 
    0.018 0.013

Rd. 2,    μ ˆ    2  
S  [−16] 33   − 11.1  

 (3.0) 
    0.001 0.107

Rd. 3,    μ ˆ    3  
S  [−23] 33   − 14.7  

 (3.0) 
    0.000 0.006

Joint tests: 0.000      ‡  0.000      §  

Notes: Figures derived from a single  random-effects  least squares regression for the relative cutoff ( choice-51) against 
 treatment-round dummies. Standard errors in parentheses,  risk-neutral predicted cutoffs in square brackets. There 
are 170/137/33 Total/Selection/No Selection  first-mover participants across supergames 11–20 and 55/22/33 in 
supergame 21. Selection treatment includes data from S and  S-Peer for supergames 11–20, as both treatments are 
identical up to supergame 21 (see section III for details); exclude participants in the second- and  third-mover roles 
(these figures given in the online Appendix).  † − Univariate significance tests columns examine differences from 
either the  first-round coefficient from the control (  H 0  :     μ ˆ    t  

j  =   μ ˆ    1  
NS   for treatment  j , round  t ) or the theoretical predic-

tion (  H 0  :     μ ˆ    t  
j  =  μ  t  

⁎j  ).  ‡ –Joint test of stationary cutoffs across the supergame (  H 0   :   μ ˆ    1  
j   =   μ ˆ    2  

j   =   μ ˆ    3  
j    for treatment  j ); 

 § –Joint test of PBE cutoffs in supergame (  H 0   :  0 =   μ ˆ    1  
j   −  μ  1  

⁎j  =   μ ˆ    2  
j   −  μ  2  

⁎j  =   μ ˆ    3  
j   −  μ  3  

⁎j  ).
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RESULT 1 (Control Stationarity): In line with Hypothesis 1, we cannot reject sta-
tionarity for average behavior in our NS sessions, nor can we reject the stronger 
 risk-neutral prediction.

Given that aggregate behavior in our control is  well behaved and close to 
the  risk-neutral prediction, we turn to aggregate behavior in the  S treatment 
where  nonstationarity is predicted. The bottom half of Table  1 provides the 
average  first-mover cutoffs across rounds 1–3 for the  S treatment, again break-
ing up the estimates into those obtained in supergames 11–20 and supergame 
21. Our prediction for the  S treatment is that cutoffs are decreasing across the 
rounds (Hypothesis 2) but behavior starts out at the NS level in round one 
(Hypothesis 3).

The data do indicate a decreasing response for the  S  treatment. While stationarity 
of the cutoffs in the control can not be rejected jointly, we strongly reject stationarity 
in the  S treatment ( p < 0.001  from a Wald test) where the coefficients indicate a 
strictly decreasing cutoff. However, although behavior is qualitatively in line with the 
prediction of a decreasing response, the aggregate cutoffs in S are far from the PBE 
prediction. As illustrated in Figure 3, participants’ behavior does not fully internalize 
the predicted degree of adverse selection. For supergames 11–20, cutoffs in round 
3 indicate approximately half the predicted effect (increasing to about 64 percent 
if we look at supergame 21 on its own). Moreover, the attenuation in the response 
relative to the theoretical prediction becomes more pronounced once we consider 
that  first-mover participants in our experiment start out with lower average cutoffs in 
the very first round. While the behavioral decrease across the 3 rounds is significant 
(   μ ˆ    3  

S  −   μ ˆ    1  
S  = − 7.65  in supergame 21, different from 0 with  p < 0.001 ), the magni-

tude of the observed cutoff change across the supergame is a third of the theoretical drop  
of −23.

Behavior in the  first round of the  S treatment jumps out as an anomaly. Despite an 
equivalent decision for  first-round  first movers to NS, the provided  first-round cutoffs 
in the S supergames are significantly lower than both the NS cutoffs ( p = 0.002 ) 
and the  risk-neutral prediction ( p = 0.004 ). Moreover, this effect becomes more 
pronounced if we focus just on cutoffs in the last supergame.

RESULT 2 (Treatment Dynamics): In line with Hypothesis 2, we reject that aggre-
gate behavior in the S treatment is stationary, as the cutoffs have a significant and 
strictly decreasing trend. However, the dynamic reaction is significantly different 
from the theoretical prediction.

RESULT 3 (First-Round  Nonequivalence): We reject Hypothesis 3, as average 
 first-round cutoffs in the S treatment are significantly lower than both the NS control 
and the  risk-neutral prediction.

In Section IVA, we show that the aggregate patterns from the  S treatment (a neg-
ative but shallow slope over rounds and a lower intercept) are the product of indi-
vidual heterogeneity. Two behavioral types emerge: (i) sophisticated participants 
using decreasing cutoffs across the supergame, starting close to the  risk-neutral 



VOL. 13 NO. 4 15ARAUJO ET AL.: THE TIMES THEY ARE A-CHANGING

value in the first round, and (ii) boundedly rational participants using a stationary 
response across the supergame, where the level of their cutoff shifts downward due 
to experienced (unconditional) selection. When averaged together, the two types 
produce the observed behavior, where the boundedly rational types lower the inter-
cept and attenuate the dynamic response from the sophisticated types. Before ana-
lyzing individual heterogeneity in the next section, we briefly outline results from 
four additional treatments that checked the robustness of the  S-treatment results.

Summary of Robustness Treatments.—We run three treatments that manipulate 
the information that participants receive on others’ behavior and one additional 
treatment that generates dynamic adverse selection in a  decision-making environ-
ment. Details of these treatments and the results are provided in the online Appendix 
for interested readers, as the main findings replicate the above. Our intention here is 
to provide a concise summary of each treatment conducted.

ROBUSTNESS TREATMENT 1 ( S-across): Additional strategic feedback across 
supergames.

Here we replicate the  S treatment, but participants are given complete strategic 
feedback on other players’ choices at the end of each supergame. Looking back to 
Figure 1, panel A in the design, where the  S treatment only informed participants 
on their own choices (the elements in black), in  S-across, participants are informed 
of all elements in the figure once the supergame has ended. Results mirror those in 
the  S treatment.

ROBUSTNESS TREATMENT 2 ( S-within): Additional strategic feedback within 
the  S-treatment supergame.

This treatment modifies the information structure within the supergame so that 
participants are informed about others’ switches within the supergame. Rather 
than time, the relevant conditioning variable for selection is now the observation 
of a switch by another participant. In the Figure  1, panel A example, the first 
mover would know that the  second mover had switched when they made their 
choice in round two. We again find effects qualitatively similar to the  S treatment 
at the aggregate level. Sophisticated participants respond to the appropriate sig-
nal (observed switches, not the passage of time), but the size of the response is 
attenuated.

ROBUSTNESS TREATMENT 3 ( S-peer): Peer advice on strategy for the  S 
treatment.

These sessions are identical to the  S treatment, except for supergame 21.16 Before 
the final supergame (which is paid with certainty), participants are matched into 

16 Because the treatment is identical to S up to supergame 20, data from this treatment were included in Table 1 
for the columns examining supergames 11–20, but not for results examining supergame 21.
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 aligned-interest groups of three. After the chat, group members are matched with 
members from other chat groups for a final  S supergame where the  supergame-21 
outcome from 1 of the 3  chat-group members is randomly selected for the entire 
group. As such,  group members are given a clear incentive to explain the environ-
ment to others.

Even though many groups do have chat members who explain the underlying 
tensions in the game to the other participants, the aggregate behavior in supergame 
21 is not significantly different from that observed in the  S-treatment environment.17

ROBUSTNESS TREATMENT 4 ( S-explicit): This treatment contains a decision 
problem with adverse selection across time.

In the NS control, a single agent makes choices over time, and because the 
rematching pool is held constant, there is no adverse selection. In this modifica-
tion, we provide the same rematching pool in the first round (an equal chance of 
each of the three unheld balls). In round two, however, the rematching pool has 
the  highest-value ball removed and becomes selected, and in round three, the 
 second-highest rematching ball is also removed, so the only rematching ball is the 
worst of the three. This treatment exhibits similar effects to the  S treatment, with a 
 nonstationary response that  underreacts to the adverse selection present.18

IV. Discussion

A. Participant Heterogeneity and Experience Effects

In Section III, we provide evidence that average cutoffs are significantly decreas-
ing across the  S supergames but are stationary in the NS control. To an extent, this 
represents a victory for the theory as a qualitative prediction on aggregate behavior, 
where quantitative differences might be explained by other features of preferences. 
However, in this section, we show that the average behavior masks substantial hetero-
geneity in the participants’ decision-making. While a large minority of participants 
do use strictly decreasing cutoffs in the  S treatment, the majority use a stationary 
cutoff within the supergame. In this section, we examine  individual-level results to 
better understand the participants’  within-supergame responses and the extent to 
which they adjust their behavior across supergames as they gain experience.19

17 Chat logs from all  S-peer sessions are included in online Appendix D for interested readers. Example expla-
nations: “As the rounds go on, the chances that the ball the computer is holding has a really small value increases 
[. . .] because in previous rounds, if someone had a small value they probably switched and gave it to the computer”; 
“So here are my thoughts: The chance of you getting a low # that someone else switched out is based on which 
mover you are and what round it is. Typically I go with ~50 if I am mover 1 or 2 on the first round [. . .] Then drop 
down for each subsequent round. Because you get stuck with what you switch to and as time goes on that is much 
more likely to be a low # .”

18 The only difference from the  S treatment is that  first-mover,  first-round behavior in  S-explicit is not differ-
ent than  first-round behavior in the NS control. This is likely due to the reduced effects of learning, as subjects 
in  S-explicit encounter fewer instances of rematching to a  low-value ball compared to S. We elaborate on this in 
another version of this paper, which is available upon request.

19 In a companion paper, we examine the extent to which learning is predictable, using additional experimental 
data to test a model of  misspecified learning.
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We define a simple  type schema based on participants’ choices in the final 
supergame.20 Specifically, we dichotomize participants as either decreas-
ing or  nondecreasing, where for the  nondecreasing types, we further break 
down the fraction that are stationary. A decreasing participant is one whose 
 final-supergame cutoffs satisfy   μ  1  

i   >  μ  2  
i   ≥  μ  3  

i   , where a stationary participant sat-
isfies   μ  1  

i   =  μ  2  
i   =  μ  3  

i   . In addition to these  knife-edge types, we create a parallel 
family of definitions for ϵ  > 0 , where an ϵ-decreasing type satisfies   μ  1  

i   ≥  μ  2  
i   + ϵ  

and   μ  2  
i   ≥  μ  3  

i    (tightening the definition) and an ϵ-stationary type satisfies   | μ  1  
i   −  μ  2  

i  | ,  
 | μ  1  

i   −  μ  3  
i  |  < ϵ  (weakening the definition).21

Table 2 provides the type compositions in the NS and  S environments (including 
the robustness treatments). Focusing on the type definitions with  ϵ = 2.5 , we find 
that all but 1 participant in the  NS control use  nondecreasing cutoffs, with a large 
(slim) majority being  ϵ  (exactly) stationary. In contrast, pooling across our  adverse 
selection treatments where we expect decreasing behavior, we find that only a third 
of participants use decreasing cutoffs. As such, a comparison of the  decreasing-type 
proportion between NS and S suggests that only one in every three participants cor-
rectly conditions on time in the selection environment. The majority of participants 
are instead better classified as using a stationary cutoff across the supergame.

Though our type dichotomy is based solely on behavior in the session’s final 
supergame, the types are highly predictive of earlier responses. We look at two key 
measures in earlier supergames: (i) the participant’s choice as a  first mover in round 
one,   μ 1   , where no selection has occurred yet, and (ii) a  within-supergame measure 
of the response to time,  Δμ ≔  μ j,1   −  μ j,2    (regardless of the mover role  j ). For each 
variable, we conduct  random-effects regressions on a set of dummies interacting 
the participant’s type (based on supergame-21 behavior), the game environment (S 
or NS), and indicators for each block of 5 supergames. The regression results are 
provided in Table 3, where the final column indicates the  across-session difference 
in each coefficient (comparing supergames 16–20 and supergames 6–10).22

For the  first-round cutoffs, rematching leads to an identical lottery in both S and 
NS, where the  risk-neutral prediction is a normalized zero cutoff. Our results here 
indicate the following: (i) Participants in the NS treatment use cutoffs that are con-
sistent with the  risk-neutral prediction across the entire session, though the averages 
are always slightly above 0, and where the increase across the session is signifi-
cant ( p = 0.003 ). (ii) In contrast to S, participants coded as  nondecreasing start 
out consistent with the  risk-neutral response but decrease over the course of the 
 session until significantly negative ( p = 0.009 ). (iii)  First-round  first-mover cut-
offs for participants coded as decreasing in S are not significantly different from the 
 risk-neutral PBE prediction in any supergame block for the  S treatment, and this 
does not change substantially over the session.

20 The final supergame represents the point where participants have maximal experience with the task and where 
we ramp up the monetary incentive by an order of magnitude, as this supergame is paid for sure.

21 Figure A.4.1 in the online Appendix provides the type proportions as we vary ϵ from 0 to 10, illustrating the 
robustness of across definitions.

22 For the  S-treatment results, we include participants from both S and  S-across, as these supergames are the-
oretically identical. We do not include data from  S-within or  S-explicit, as the theoretical environments here are 
distinct, nor do we include data from  S-peer, as the type classifications are made after the chat rounds, and so the 
 type definition is contaminated.
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The second measure provided in Table 3 examines how participants change their 
 within-supergame cutoffs in reaction to time. We find the following: (iv) Participants 
classified as  nondecreasing in supergame 21 do not have a significant cutoff change 
between rounds 1 and 2 in prior supergames (  p-values for blocks  6–10,  11–15, and 
 16–20 are, respectively, 0.544, 0.254, and 0.067).23 This is true in environments both 
with and without adverse selection. (v) Finally, participants classified as decreasing 
in supergame 21 show a significant  within-supergame cutoff reduction in reaction 
to time in earlier supergames, even in the 6–10 block (  p < 0.001  for all 3 blocks). 
However, we do find evidence that the magnitude of their  within-supergame reac-
tion significantly increases across the session (  p = 0.004 ). By the last supergame 
block, the cutoff difference is −8.6, close to the PBE prediction of −11.3.24

From Table 3, we conclude that the type classifications based on supergame 21 
are useful for understanding participants’ prior behavior. While this result may not 
be surprising for the  nondecreasing participants, it does speak to the stability of 
their classification. For the decreasing types, the results indicate that these partici-
pants understand early on within the session that adverse selection accrues within 
the supergame and that their cutoff should be decreasing with time.25 Beyond the 
choice data, independent coding by two research assistants of the chat logs from 
the  S-peer treatment suggest that approximately a quarter of the participants used 
the chats to explain the dynamic adverse selection mechanic within the game to 
others. This indicates that decreasing participants that do converge toward equilib-
rium behavior do so through an understanding of the strategic interaction. Though the 
sophisticated participants do adapt their expectations with respect to the size of the 
 within-supergame dynamic selection effect (the significant negative reduction  across 

23 Nondecreasing participants in supergames  16–20 in the  S treatment and  11–15 in the NS control do have 
a marginally significant decrease in their cutoff. However, the change is quantitatively small (−0.9 and −1.3, 
 respectively) and is insignificant when we look at the joint hypothesis across the three blocks.

24 Since participants are equally likely to be assigned first-, second-, or  third-mover roles, the expected PBE 
prediction takes account of the frequency of each mover role, so:  (1 / 3) (−16 − 9 − 7)  = − 11.3 . 

25 Looking just at decreasing types, 75–80 percent have a  cutoff difference in excess of −2.5 in each of the 
prior supergame blocks. Of the 29 participants with observed  within-supergame changes in all 3 blocks, 21 are 
consistently negative.

Table 2—Type Proportions

Treatment   N Sbj.   Decreasing  Nondecreasing

Total Stationary

Exact  ϵ = 2.5 Exact  ϵ = 2.5 Exact  ϵ = 2.5 

 NS control 33 3.0% 3.0% 97.0% 97.0% 57.6% 75.8%
 S treatment 66 42.4% 37.9% 57.6% 62.1% 36.4% 47.0%

Robustness:
 S-across 60 28.3% 23.3% 71.7% 76.7% 45.0% 60.0%
 S-peer 72 34.7% 30.6% 65.3% 69.4% 47.2% 55.6%
 S-explicit 36 33.3% 33.3% 66.7% 66.7% 33.3% 47.2%

S + robustness 234 35.0% 31.2% 65.0% 68.8% 41.4% 53.0%
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supergames for  Δμ ), their appreciation of the need to condition on time emerges 
early on in the session and remains present until the final supergame.

While the  nondecreasing participants use an essentially static cutoff within the 
supergames, the  across-supergame results do indicate a shift with experience. In 
particular, the  nondecreasing participants become more pessimistic on the value 
of rematching as the  S-treatment sessions proceed. This trend is absent in the  NS 
control, where, if anything, the  NS participants move in the opposite direction as the 
session proceeds.26 While we do not detect any evidence that a substantial fraction 
of the participants move between a stationary and decreasing response, we do find 
evidence that the stationary types reduce their cutoffs.

Focusing on the  first-round  first-mover cutoff, we are unable to reject the 
 risk-neutral predictions in the  NS  treatment and for the decreasing participants in  S . 
A similar failure to reject the  risk-neutral prediction arises in the early supergames 
(6–10) for the  nondecreasing participants in the  S  treatment. However, by the end 
of the session, a significant gap arises where the average  nondecreasing partici-
pant uses a significantly negative cutoff of −4.1 ( p = 0.009 ) (where the reduction 
across the session is also significant,  p = 0.002 ).

Taken together, the results in Table  3 provide an explanation for our previ-
ous findings with the two types pooled together. Aggregate behavior is a convex 
 combination between two responses: (i) a minority of sophisticated subjects with a 
strongly decreasing,  equilibrium-like response and (ii) a majority of subjects who do 
not respond to time, with a stationary response within the supergame; however, the 
level of their stationary response falls as they gain experience. Mixing the behaviors 

26 Given the  between-subject identification, we should clarify that about 30 percent of the participants classified 
as  nondecreasing in NS would be expected to be decreasing types were they counterfactually placed in our S envi-
ronment. However, we cannot separately identify sophisticated participants in the NS environment.

Table 3—Behavior by Type across the Session

Type Supergames  Δ Session

6–10 11–15 16–20

 NS Treatment (All)
 First-round cutoff,   μ 1     + 1.8  

 (2.4) 
      + 3.9  

 (2.4) 
      + 3.7  

 (2.4) 
      + 2.0  

 (0.7) 
    

Cutoff change,  Δμ   + 0.2  
 (0.8) 

      − 1.3  
 (0.8) 

      − 0.4  
 (0.8) 

      − 0.5  
 (0.8) 

    

 S Treatment ( Nondecreasing)
 First-round cutoff,   μ 1     − 1.7  

 (1.6) 
      − 2.6  

 (1.6) 
      − 4.1  

 (1.6) 
      − 2.4  

 (0.8) 
    

Cutoff change,  Δμ   − 0.3  
 (0.5) 

      − 0.5  
 (0.5) 

      − 0.9  
 (0.5) 

      − 0.6  
 (0.5) 

    

 S Treatment (Decreasing)
 First-round cutoff,   μ 1     − 2.0  

 (2.3) 
      − 3.8  

 (2.3) 
      − 2.3  

 (2.3) 
      − 0.3  

 (1.1) 
    

Cutoff change,  Δμ   − 6.6  
 (0.7) 

      − 7.9  
 (0.7) 

      − 8.6  
 (0.7) 

      − 2.0  
 (0.7) 

    

Notes: Coefficients (and standard errors in parentheses) derived from two  random-effects regres-
sions from 1,125/1,233 observations of the  first-mover  first-round cutoff/ cutoff change within 
supergame over 159 participants.



20 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS NOVEMBER 2021

of the two types together, the sophisticated minority are large enough in number to 
exhibit the qualitative  decreasing-over-time response in the pooled data. However, 
the level of the sophisticated types’ decrease is heavily attenuated due to the larger 
mass of stationary participants. This explains Result 2, with a significantly decreas-
ing response to time but a quantitatively small effect.

Similarly, for Result 3, our  aggregate-level data indicate a significant difference 
in  first-round behavior between the  S  and  NS  treatments, despite decisions that are 
predicted to be theoretically identical. This effect is driven by the stationary partic-
ipants, where their  longer-run response in reaction to experienced selection across 
the session is to lower their cutoffs but maintain stationarity. This is in direct con-
trast with the learning effects in the  NS  treatment without selection, where, if any-
thing, we see the opposite pattern, with subjects increasing their stationary cutoff 
across supergames as they gain experience. The  aggregate-level effects for Result 3 
are therefore driven by a combination of an adaptation of the response in reaction 
to experienced bad outcomes and the adaptation failing to identify the mechanic for 
the selection effect and so maintaining a stationary response.

We summarize this finding as follows.

RESULT 4 (Heterogeneity): Our aggregate-level results are explained by a mixture 
of two types:

 (i) a minority of participants (approximately  one-third) who understand the 
dynamic adverse selection within the environment and use a decreasing 
response that is close to the theoretical best response, and

 (ii) a majority of participants (approximately  two-thirds) who are best described 
as using a stationary response, but where continued exposure to the adverse 
selection environment causes them to use a lower  time-invariant cutoff, even 
for the first round, where there is no adverse selection.

V. Conclusion

We use a novel experiment to examine a  common value matching environment, 
one where adverse selection is dynamic, growing over time. Though substantially 
simplified, the core strategic tensions are similar to those present in labor, housing, 
and mating markets. The equilibrium prediction is that participants recognize the 
growing adverse selection, conditioning their responses on time, with a greater will-
ingness to retain  low-value objects at later time periods.

A prior literature on failures of contingent thinking identifies the sequentiality 
of the decision as a key predictor for understanding adverse selection and suggests 
optimism for the equilibrium predictions in our sequential setting. However, while a 
substantial minority do respond to the adverse selection in a sophisticated way with 
a  close-to-best response, the majority exhibit no change at all in their valuations 
over time: a stationary response to a  nonstationary problem. While sequential, our 
environment does have substantial underlying uncertainty. Coupled with a comple-
mentary result in  Martí nez-Marquina, Niederle, and  Vespa (2019), which shows 
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much greater strategic sophistication in a simultaneous setting with the uncertainty 
removed, the strategic sophistication shown in previous sequential studies seems to 
be driven by the removal of uncertainty within the sequential setting.

While the modal stationary response places a cloud over the equilibrium pre-
dictions for our dynamic environment, we do see a  silver lining: our sophisticated 
minority seem to understand the equilibrium introspectively. Their valuations 
are decreasing with time from the first supergames in which we can observe this 
response. Most tellingly, in written advice to others, the minority can explain the 
game’s selection mechanic to others, speaking to a deeper understanding of the stra-
tegic features. When we think of professionals operating in dynamic markets—for 
example, finance, insurance, and labor markets—selection forces would seem to 
make the behavior of our sophisticated minority more representative.

That said, outside of professional settings where expert  decision-makers are more 
likely to introspectively understand the strategic forces, our results point to a more 
ubiquitous misunderstanding of the selection effects. Moreover, while we do not 
observe any clear “eureka” moments where participants move between a stationary 
and decreasing response, we do observe significant adaptation to experience. Future 
research focused on learning with misspecified models may prove very useful to 
understanding and predicting limit behavior, even if the conditions for convergence 
to the standard PBE are met.
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